Posts

Showing posts from September, 2008

Aurora

Aurora (phenomenon), luminous atmospheric phenomenon occurring most frequently above 60° North or South latitude, but also in other parts of the world. It is named specifically, according to its location, aurora borealis (northern lights) or aurora australis (southern lights). The term aurora polaris, polar lights, is a general name for both. The aurora consists of rapidly shifting patches and dancing columns of light of various hues. Extensive auroral displays are accompanied by disturbances in terrestrial magnetism and interference with radio, telephone, and telegraph transmission. The period of maximum and minimum intensity of normal auroras seems to be almost exactly opposite that of the sunspot cycle, which is an 11-year cycle, so the intensity of the auroras is normally low while the sun is very active. Huge displays that occur farther from the earth’s poles than normal, however, occur more often while the sun is very active.

Cloud

Image
Cloud, condensed form of atmospheric moisture consisting of small water droplets or tiny ice crystals . Clouds are the principal visible phenomena of the atmosphere. They represent a transitory but vital step in the water cycle, which includes evaporation of moisture from the surface of the earth, carrying of this moisture into higher levels of the atmosphere, condensation of water vapor into cloud masses, and final return of water to the surface as precipitation. Topics: Formation and Effects Classification

High Clouds

Image
These are clouds composed of ice particles, found at average levels of 8 km (5 mi) or more above the earth. The family contains three principal genera. Cirrus clouds are isolated, feathery, and threadlike, often with hooks or tufts, and are arranged in bands. Cirrostratus clouds appear as a fine, whitish veil; they occasionally exhibit a fibrous structure and, when situated between the observer and the moon, produce halo phenomena. Cirrocumulus clouds form small, white, fleecy balls and wisps, arranged in groups or rows. Cirrocumulus and cirrus clouds are popularly described by the phrase “mackerel scales and mares' tails.”

Middle Clouds

Image
These are clouds composed of water droplets and ranging in altitude from about 3 to 6 km (about 2 to 4 mi) above the earth. Two principal genera are included in the family. Altostratus clouds appear as a thick, gray or bluish veil, through which the sun or moon may be seen only diffusely, as through a frosted glass. Altocumulus clouds have the appearance of dense, fleecy balls or puffs somewhat larger than cirrocumulus. The sun or moon shining through altocumulus clouds may produce a corona, or colored ring, markedly smaller in diameter than a halo.

Low Clouds

Image
These clouds, also composed of water droplets, are generally less than 1.6 km (1 mi) high. Three principal forms comprise this group. Stratocumulus clouds consist of large rolls of clouds, soft and gray looking, which frequently cover the entire sky. Because the cloud mass is usually not very thick, blue sky often appears between breaks in the cloud deck. Nimbostratus clouds are thick, dark, and shapeless. They are precipitation clouds from which, as a rule, rain or snow falls. Stratus clouds are sheets of high fog. They appear as flat, white blankets, usually less than 610 m (2000 ft) above the ground. When they are broken up by warm, rising air, the sky beyond usually appears clear and blue.

Clouds With Vertical Development

Image
Clouds of this type range in height from less than 1.6 km (1 mi) to more than 13 km (8 mi) above the earth. Two main forms are included in this group. Cumulus clouds are dome-shaped, woolpack clouds most often seen during the middle and latter part of the day, when solar heating produces the vertical air currents necessary for their formation. These clouds usually have flat bases and rounded, cauliflowerlike tops. Cumulonimbus clouds are dark, heavy-looking clouds rising like mountains high into the atmosphere, often showing an anvil-shaped veil of ice clouds, false cirrus, at the top. Popularly known as thunderheads, cumulonimbus clouds are usually accompanied by heavy, abrupt showers. An anomalous, but exceptionally beautiful, group of clouds contains the nacreous, or mother-of-pearl, clouds, which are 19 to 29 km (12 to 18 mi) high, and the noctilucent clouds, 51 to 56 km (32 to 35 mi) high. These very thin clouds may be seen only between sunset and sunrise and are visible only in h

Dam

Dam, structure that blocks the flow of a river, stream, or other waterway. Some dams divert the flow of river water into a pipeline, canal, or channel. Others raise the level of inland waterways to make them navigable by ships and barges. Many dams harness the energy of falling water to generate electric power. Dams also hold water for drinking and crop irrigation, and provide flood control. See also: Why People Build Dams Types of Dams Ecological Impact

Types of Dams

Dams are classified by the type of material used in their construction and by their shape. Dams can be constructed from concrete, stone masonry, loose rock, earth, wood, metal, or a combination of these materials. Engineers build dams of different types, depending on the conditions of the riverbed, the geology of the surrounding terrain, the availability of construction materials, and the availability of workers. When more than one type of dam will suffice, engineers often opt to construct a type that they have built previously. A. Gravity Dams Gravity dams use only the force of gravity to resist water pressure—that is, they hold back the water by the sheer force of their weight pushing downward. To do this, gravity dams must consist of a mass so heavy that the water in a reservoir cannot push the dam downstream or tip it over. They are much thicker at the base than the top—a shape that reflects the distribution of the forces of the water against the dam. As water becomes deeper, it ex

Dam: Ecological Impact

Building a dam changes the ecology of the surrounding area. Among the most affected animals are fish that depend on free-flowing water to live. Some kinds of salmon, trout, and other fish species migrate downstream to spend part of their lives in the open ocean. As adults, they return upstream to lay their eggs in the gravel bottoms of the rivers where they were born. Large dams block the passage of such migratory fish. Some dams incorporate a fish pass to allow fish a chance to swim around the dam and reach upstream spawning grounds. Fish passes called fish ladders comprise a series of small pools arranged like stair steps. Each pool is slightly higher than the previous one. Fish ladders are based on the idea that a fish swimming upstream cannot leap over a dam that is more than about 5 meters high, but it can leap up a series of pools, each slightly higher than the one below it. Despite fish passes and other efforts to help fish bypass dams, the cumulative effect of multiple dams bui

Earth's Atmosphere

The atmosphere is a layer of different gases that extends from Earth’s surface to the exosphere, the outer limit of the atmosphere, about 9,600 km (6,000 mi) above the surface. Near Earth’s surface, the atmosphere consists almost entirely of nitrogen (78 percent) and oxygen (21 percent). The remaining 1 percent of atmospheric gases consists of argon (0.9 percent); carbon dioxide (0.03 percent); varying amounts of water vapor; and trace amounts of hydrogen, nitrous oxide, ozone, methane, carbon monoxide, helium, neon, krypton, and xenon. Layers of the Atmosphere The layers of the atmosphere are the troposphere , the stratosphere , the mesosphere, the thermosphere, and the exosphere. The troposphere is the layer in which weather occurs and extends from the surface to about 16 km (about 10 mi) above sea level at the equator. Above the troposphere is the stratosphere, which has an upper boundary of about 50 km (about 30 mi) above sea level. The layer from 50 to 90 km (30 to 60 mi) is

Earth's Surface

Earth’s surface is the outermost layer of the planet. It includes the hydrosphere, the crust, and the biosphere. See: Hydrosphere Crust Biosphere Changes to Earth’s Surface

Soil Management

. Soil Management is the basis of all scientific agriculture, which involves six essential practices: proper tillage; maintenance of a proper supply of organic matter in the soil; maintenance of a proper nutrient supply; control of soil pollution; maintenance of the correct soil acidity; and control of erosion. TILLAGE The purpose of tillage is to prepare the soil for growing crops. This preparation is traditionally accomplished by using a plow that cuts into the ground and turns over the soil. This removes or kills any weeds growing in the area, loosens and breaks up the surface layers of the soil, and provides a bed of soil that holds sufficient moisture to permit the planted seeds to germinate. Traditional tillage may harm the soil if used continuously over many years, especially if the fertile topsoil layer is thin. MAINTENANCE OF ORGANIC MATTER Organic matter is important in maintaining good physical conditions in the soil. It contains the entire soil reserve of nitrogen and signi

Understanding Soil

Healthy soil is indispensable for a healthy garden. Plants derive water, oxygen for their roots, and essential nutrients from the soil. Soil consists of two components: minerals from weathered rocks and organic matter from decayed organisms and animal wastes. The mineral content of the soil provides plants with nutrients, such as calcium, potassium, and phosphorus. Organic matter improves drainage and helps prevent waterlogged soils, reducing the occurrence of diseases such as root rot. Soil texture, the size of the individual soil particles, affects how fast water drains and how well plants absorb nutrients. The largest soil particles are grains of sand . Sand grains fit loosely together with large gaps between them, resembling marbles in a jar. The large pores let water (and the nutrients dissolved in it) drain out too quickly for most plants to absorb it. Clay particles, on the other hand, are very tiny, and they pack closely together, resembling tiny beads in a jar. The pores bet

Efforts To Protect The Environment

Most scientists agree that if pollution and other environmental deterrents continue at their present rates, the result will be irreversible damage to the ecological cycles and balances in nature upon which all life depends. Scientists warn that fundamental, and perhaps drastic, changes in human behavior will be required to avert an ecological crisis. To safeguard the healthful environment that is essential to life, humans must learn that Earth does not have infinite resources. Earth’s limited resources must be conserved and, where possible, reused. Furthermore, humans must devise new strategies that mesh environmental progress with economic growth. The future growth of developing nations depends upon the development of sustainable conservation methods that protect the environment while also meeting the basic needs of citizens. Many nations have acted to control or reduce environmental problems. For example, Great Britain has largely succeeded in cleaning up the waters of the Thames and

Factors Threatening The Environment

The problems facing the environment are vast and diverse. Global warming, the depletion of the ozone layer in the atmosphere, and destruction of the world’s rain forests are just some of the problems that many scientists believe will reach critical proportions in the coming decades. All of these problems will be directly affected by the size of the human population. A. Population Growth B. Global Warming C. Depletion of the Ozone Layer D. Habitat Destruction and Species Extinction E. Air Pollution F. Water Pollution G. Groundwater Depletion and Contamination H. Chemical Risks I. Environmental Racism J. Energy Production Related topics: Understanding the Environment Efforts to Protect the Environment Environment: Future Prospects

Understanding The Environment

The science of ecology attempts to explain why plants and animals live where they do and why their populations are the sizes they are. Understanding the distribution and population size of organisms helps scientists evaluate the health of the environment. In 1840 German chemist Justus von Liebig first proposed that populations cannot grow indefinitely, a basic principle now known as the Law of the Minimum. Biotic and abiotic factors, singly or in combination, ultimately limit the size that any population may attain. This size limit, known as a population’s carrying capacity, occurs when needed resources, such as food, breeding sites, and water, are in short supply. For example, the amount of nutrients in soil influences the amount of wheat that grows on a farm. If just one soil nutrient, such as nitrogen, is missing or below optimal levels, fewer healthy wheat plants will grow. Population size and distribution may also be affected, either directly or indirectly, by the way species in a

Environment

Environment, all of the external factors affecting an organism. These factors may be other living organisms (biotic factors) or nonliving variables (abiotic factors), such as temperature, rainfall, day length, wind, and ocean currents. The interactions of organisms with biotic and abiotic factors form an ecosystem . Even minute changes in any one factor in an ecosystem can influence whether or not a particular plant or animal species will be successful in its environment. Organisms and their environment constantly interact, and both are changed by this interaction. Like all other living creatures, humans have clearly changed their environment, but they have done so generally on a grander scale than have all other species. Some of these human-induced changes—such as the destruction of the world’s tropical rain forests to create farms or grazing land for cattle—have led to altered climate patterns (see Global Warming ). In turn, altered climate patterns have changed the way animals and

Biodiversity

Biodiversity or Biological Diversity, sum of all the different species of animals, plants, fungi, and microbial organisms living on Earth and the variety of habitats in which they live. Scientists estimate that upwards of 10 million—and some suggest more than 100 million—different species inhabit the Earth. Each species is adapted to its unique niche in the environment, from the peaks of mountains to the depths of deep-sea hydrothermal vents , and from polar ice caps to tropical rain forests . Biodiversity underlies everything from food production to medical research. Humans the world over use at least 40,000 species of plants and animals on a daily basis. Many people around the world still depend on wild species for some or all of their food, shelter, and clothing. All of our domesticated plants and animals came from wild-living ancestral species. Close to 40 percent of the pharmaceuticals used in the United States are either based on or synthesized from natural compounds found in

Earth's Surface: Hydrosphere

The hydrosphere consists of the bodies of water that cover 71 percent of Earth’s surface. The largest of these are the oceans, which contain over 97 percent of all water on Earth. Glaciers and the polar ice caps contain just over 2 percent of Earth’s water in the form of solid ice. Only about 0.6 percent is under the surface as groundwater . Nevertheless, groundwater is 36 times more plentiful than water found in lakes, inland seas, rivers, and in the atmosphere as water vapor. Only 0.017 percent of all the water on Earth is found in lakes and rivers. And a mere 0.001 percent is found in the atmosphere as water vapor. Most of the water in glaciers, lakes, inland seas, rivers, and groundwater is fresh and can be used for drinking and agriculture. Dissolved salts compose about 3.5 percent of the water in the oceans, however, making it unsuitable for drinking or agriculture unless it is treated to remove the salts.

Earth's Surface: Crust

The crust consists of the continents, other land areas, and the basins, or floors, of the oceans. The dry land of Earth’s surface is called the continental crust. It is about 15 to 75 km (9 to 47 mi) thick. The oceanic crust is thinner than the continental crust. Its average thickness is 5 to 10 km (3 to 6 mi). The crust has a definite boundary called the Mohorovičić discontinuity, or simply the Moho. The boundary separates the crust from the underlying mantle, which is much thicker and is part of Earth’s interior. Oceanic crust and continental crust differ in the type of rocks they contain. There are three main types of rocks: igneous , sedimentary , and metamorphic . Igneous rocks form when molten rock, called magma, cools and solidifies. Sedimentary rocks are usually created by the breakdown of igneous rocks. They tend to form in layers as small particles of other rocks or as the mineralized remains of dead animals and plants that have fused together over time. The remains of dead a

Earth's Surface: Biosphere

The biosphere includes all the areas of Earth capable of supporting life. The biosphere ranges from about 10 km (about 6 mi) into the atmosphere to the deepest ocean floor. For a long time, scientists believed that all life depended on energy from the Sun and consequently could only exist where sunlight penetrated. In the 1970s, however, scientists discovered various forms of life around hydrothermal vents on the floor of the Pacific Ocean where no sunlight penetrated. They learned that primitive bacteria formed the basis of this living community and that the bacteria derived their energy from a process called chemosynthesis that did not depend on sunlight. Some scientists believe that the biosphere may extend relatively deep into Earth’s crust. They have recovered what they believe are primitive bacteria from deeply drilled holes below the surface.

Changes To Earth's Surface

Earth’s surface has been constantly changing ever since the planet formed. Most of these changes have been gradual, taking place over millions of years. Nevertheless, these gradual changes have resulted in radical modifications, involving the formation, erosion, and re-formation of mountain ranges, the movement of continents, the creation of huge supercontinents, and the breakup of supercontinents into smaller continents. The weathering and erosion that result from the water cycle are among the principal factors responsible for changes to Earth’s surface. Another principal factor is the movement of Earth’s continents and seafloors and the buildup of mountain ranges due to a phenomenon known as plate tectonics . Heat is the basis for all of these changes. Heat in Earth’s interior is believed to be responsible for continental movement, mountain building, and the creation of new seafloor in ocean basins. Heat from the Sun is responsible for the evaporation of ocean water and the re

Changes to Earth's Surface: Weathering

Weathering is the breakdown of rock at and near the surface of Earth. Most rocks originally formed in a hot, high-pressure environment below the surface where there was little exposure to water. Once the rocks reached Earth’s surface, however, they were subjected to temperature changes and exposed to water. When rocks are subjected to these kinds of surface conditions, the minerals they contain tend to change. These changes constitute the process of weathering. There are two types of weathering: physical weathering and chemical weathering. Physical weathering involves a decrease in the size of rock material. Freezing and thawing of water in rock cavities, for example, splits rock into small pieces because water expands when it freezes. Chemical weathering involves a chemical change in the composition of rock. For example, feldspar, a common mineral in granite and other rocks, reacts with water to form clay minerals, resulting in a new substance with totally different properties than th

Changes to Earth's Surface: Erosion

Erosion is the process that removes loose and weathered rock and carries it to a new site. Water, wind, and glacial ice combined with the force of gravity can cause erosion. Erosion by running water is by far the most common process of erosion. It takes place over a longer period of time than other forms of erosion. When water from rain or melted snow moves downhill, it can carry loose rock or soil with it. Erosion by running water forms the familiar gullies and V-shaped valleys that cut into most landscapes. The force of the running water removes loose particles formed by weathering. In the process, gullies and valleys are lengthened, widened, and deepened. Often, water overflows the banks of the gullies or river channels, resulting in floods. Each new flood carries more material away to increase the size of the valley. Meanwhile, weathering loosens more and more material so the process continues. Erosion by glacial ice is less common, but it can cause the greatest landscape changes i

Plate Tectonics

Opposing this tendency toward leveling is a force responsible for raising mountains and plateaus and for creating new landmasses. These changes to Earth’s surface occur in the outermost solid portion of Earth, known as the lithosphere . The lithosphere consists of the crust and another region known as the upper mantle and is approximately 65 to 100 km (40 to 60 mi) thick. Compared with the interior of the Earth, however, this region is relatively thin. The lithosphere is thinner in proportion to the whole Earth than the skin of an apple is to the whole apple. Scientists believe that the lithosphere is broken into a series of plates, or segments. According to the theory of plate tectonics, these plates move around on Earth’s surface over long periods of time. Tectonics comes from the Greek word, tektonikos, which means “builder.” According to the theory, the lithosphere is divided into large and small plates. The largest plates include the Pacific plate, the North American plate, the Eu

Plate Tectonics: When Plates Pull Apart

When the plates pull apart, two types of phenomena occur depending on whether the movement takes place in the oceans or on land. When plates pull apart on land, deep valleys known as rift valleys form. An example of a rift valley is the Great Rift Valley that extends from Syria in the Middle East to Mozambique in Africa. When plates pull apart in the oceans, long, sinuous chains of volcanic mountains called mid-ocean ridges form, and new seafloor is created at the site of these ridges. Rift valleys are also present along the crests of the mid-ocean ridges. Most scientists believe that gravity and heat from the interior of the Earth cause the plates to move apart and to create new seafloor. According to this explanation, molten rock known as magma rises from Earth’s interior to form hot spots beneath the ocean floor. As two oceanic plates pull apart from each other in the middle of the oceans, a crack, or rupture, appears and forms the mid-ocean ridges. These ridges exist in all the w

Plate Tectonics: When Plates Collide

When plates collide or push against each other, regions called convergent plate margins form. Along these margins, one plate is usually forced to dive below the other. As that plate dives, it triggers the melting of the surrounding lithosphere and a region just below it known as the asthenosphere . These pockets of molten crust rise behind the margin through the overlying plate, creating curved chains of volcanoes known as arcs. This process is called subduction. If one plate consists of oceanic crust and the other consists of continental crust, the denser oceanic crust will dive below the continental crust. If both plates are oceanic crust, then either may be subducted. If both are continental crust, subduction can continue for a while but will eventually end because continental crust is not dense enough to be forced very far into the upper mantle. The results of this subduction process are readily visible on a map showing that 80 percent of the world’s volcanoes rim the Pacific Ocean

Plate Tectonics: When Plates Slide Past Each Other

Finally, some of Earth’s plates neither collide nor pull apart but instead slide past each other. These regions are called transform margins. Few volcanoes occur in these areas because neither plate is forced down into Earth’s interior and little melting occurs. Earthquakes, however, are abundant as the two rigid plates slide past each other. The San Andreas Fault in California is a well-known example of a transform margin. The movement of plates occurs at a slow pace, at an average rate of only 2.5 cm (1 in) per year. But over millions of years this gradual movement results in radical changes. Current plate movement is making the Pacific Ocean and Mediterranean Sea smaller, the Atlantic Ocean larger, and the Himalayan Mountains higher.

Earth's Interior

Image
The interior of Earth plays an important role in plate tectonics. Scientists believe it is also responsible for Earth’s magnetic field. This field is vital to life because it shields the planet’s surface from harmful cosmic rays and from a steady stream of energetic particles from the Sun known as the solar wind. Composition of the Interior Earth’s interior consists of the mantle and the core . The mantle and core make up by far the largest part of Earth’s mass. The distance from the base of the crust to the center of the core is about 6,400 km (about 4,000 mi). Scientists have learned about Earth’s interior by studying rocks that formed in the interior and rose to the surface. The study of meteorites , which are believed to be made of the same material that formed the Earth and its interior, has also offered clues about Earth’s interior. Finally, seismic waves generated by earthquakes provide geophysicists with information about the composition of the interior. The sudden mov

Earth's Future

With the rise of human civilization about 8,000 years ago and especially since the Industrial Revolution in the mid-1700s, human beings began to alter the surface, water, and atmosphere of Earth. In doing so, they have become active geological agents, not unlike other forces of change that influence the planet. As a result, Earth’s immediate future depends to a great extent on the behavior of humans. For example, the widespread use of fossil fuels is releasing carbon dioxide and other greenhouse gases into the atmosphere and threatens to warm the planet’s surface. This global warming could melt glaciers and the polar ice caps, which could flood coastlines around the world and many island nations. In effect, the carbon dioxide that was removed from Earth’s early atmosphere by the oceans and by primitive plant and animal life, and subsequently buried as fossilized remains in sedimentary rock, is being released back into the atmosphere and is threatening the existence of living things

Cloud Formation And Effects

The formation of clouds caused by cooling of the air results in the condensation of invisible water vapor that produces visible cloud droplets or ice particles. Cloud particles range in size from about 5 to 75 micrometers (0.0005 to 0.008 cm/0.0002 to 0.003 in). The particles are so small that light, vertical currents easily sustain them in the air. The different cloud formations result partly from the temperature at which condensation takes place. When condensation occurs at temperatures below freezing, clouds are usually composed of ice crystals; those that form in warmer air usually consist of water droplets. Occasionally, however, supercooled clouds contain water droplets at subfreezing temperatures. The air motion associated with cloud development also affects formation. Clouds that develop in calm air tend to appear as sheets or stratified formations; those that form under windy conditions or in air with strong vertical currents have a towering appearance. Clouds perform a very i

Classification of Cloud

Clouds are usually divided into four main families on the basis of their height above the ground: high clouds, middle clouds, low clouds, and clouds with vertical development that may extend through all levels. The four main divisions are further subdivided into genera, species, and varieties, which describe in detail the appearance of clouds and the manner in which they are formed. More than 100 different kinds of clouds are distinguishable. Only the primary families and most important genera are described on the topics below. A. High Clouds B. Middle Clouds C. Low Clouds D. Clouds with Vertical Development

Why People Build Dams

People build dams to divert water out of rivers for use in other locations or to capture water and store it for later use. The volume of water flowing in any given river varies seasonally. In the spring and early summer, rivers typically swell with water from rainstorms and mountain snowmelt. In the drier months of late summer and autumn, many rivers slow to a trickle. Storage dams impound seasonal floodwater so it can be used during periods of little or no rainfall. The water that backs up against a storage dam forms an artificial lake, called a reservoir. Release of water from the reservoir can be controlled through systems of pipes or gates called outlet works. A. Irrigation and Drinking Water From ancient times to the present, people have built dams to capture water to irrigate crops in areas where rainfall does not provide enough ground moisture for plant growth. Simple irrigation systems often depend on small diversion dams that raise the height of a stream. Flowing water backs u