Posts

Showing posts with the label Greenhouse Effect

The Greenhouse Effect

Image
Carbon Cycle Photosynthesis plays a crucial role in the carbon cycle. Carbon continuously circulates in the earth’s ecosystem. In the atmosphere, it exists as colorless, odorless carbon dioxide gas, which is used by plants in the process of photosynthesis. Animals acquire the carbon stored in plant tissue when they eat and exhale carbon dioxide as a by-product of metabolism. Although some carbon is removed from circulation temporarily as coal, petroleum, fossil fuels, gas, and limestone deposits, cellular respiration and photosynthesis balance to keep the amount of atmospheric carbon relatively stable. Industrialization, however, has contributed additional carbon dioxide to the environment. The energy that lights and warms Earth comes from the Sun. Most of the energy that floods onto our planet is short-wave radiation, including visible light. When this energy strikes the surface of Earth, the energy changes from light to heat and warms Earth. Earth’s surface, in turn, releases some of...

Greenhouse Effect

Greenhouse Effect, the capacity of certain gases in the atmosphere to trap heat emitted from the Earth’s surface, thereby insulating and warming the Earth. Without the thermal blanketing of the natural greenhouse effect, the Earth’s climate would be about 33 Celsius degrees (about 59 Fahrenheit degrees) cooler—too cold for most living organisms to survive. The greenhouse effect has warmed the Earth for over 4 billion years. Now scientists are growing increasingly concerned that human activities may be modifying this natural process, with potentially dangerous consequences. Since the advent of the Industrial Revolution in the 1700s, humans have devised many inventions that burn fossil fuels such as coal, oil, and natural gas. Burning these fossil fuels, as well as other activities such as clearing land for agriculture or urban settlements, releases some of the same gases that trap heat in the atmosphere, including carbon dioxide, methane, and nitrous oxide. These atmospheric gases have ...

How The Greenhouse Effect Works

The greenhouse effect results from the interaction between sunlight and the layer of greenhouse gases in the Earth's atmosphere that extends up to 100 km (60 mi) above Earth's surface. Sunlight is composed of a range of radiant energies known as the solar spectrum, which includes visible light, infrared light, gamma rays, X rays, and ultraviolet light. When the Sun’s radiation reaches the Earth’s atmosphere, some 25 percent of the energy is reflected back into space by clouds and other atmospheric particles. About 20 percent is absorbed in the atmosphere. For instance, gas molecules in the uppermost layers of the atmosphere absorb the Sun’s gamma rays and X rays. The Sun’s ultraviolet radiation is absorbed by the ozone layer, located 19 to 48 km (12 to 30 mi) above the Earth’s surface. About 50 percent of the Sun’s energy, largely in the form of visible light, passes through the atmosphere to reach the Earth’s surface. Soils, plants, and oceans on the Earth’s surface absorb abo...

Other Factors Affecting The Greenhouse Effect

Aerosols, also known as particulates, are airborne particles that absorb, scatter, and reflect radiation back into space. Clouds, windblown dust, and particles that can be traced to erupting volcanoes are examples of natural aerosols. Human activities, including the burning of fossil fuels and slash-and-burn farming techniques used to clear forestland, contribute additional aerosols to the atmosphere. Although aerosols are not considered a heat-trapping greenhouse gas, they do affect the transfer of heat energy radiated from the Earth to space. The effect of aerosols on climate change is still debated, but scientists believe that light-colored aerosols cool the Earth’s surface, while dark aerosols like soot actually warm the atmosphere. The increase in global temperature in the last century is lower than many scientists predicted when only taking into account increasing levels of carbon dioxide, methane, nitrous oxide, and fluorinated compounds. Some scientists believe that aerosol coo...

Understanding The Greenhouse Effect

Although concern over the effect of increasing greenhouse gases is a relatively recent development, scientists have been investigating the greenhouse effect since the early 1800s. French mathematician and physicist Jean Baptiste Joseph Fourier, while exploring how heat is conducted through different materials, was the first to compare the atmosphere to a glass vessel in 1827. Fourier recognized that the air around the planet lets in sunlight, much like a glass roof. In the 1850s British physicist John Tyndall investigated the transmission of radiant heat through gases and vapors. Tyndall found that nitrogen and oxygen, the two most common gases in the atmosphere, had no heat-absorbing properties. He then went on to measure the absorption of infrared radiation by carbon dioxide and water vapor, publishing his findings in 1863 in a paper titled “On Radiation Through the Earth’s Atmosphere.” Swedish chemist Svante August Arrhenius, best known for his Nobel Prize-winning work in electroche...