Understanding The Greenhouse Effect


Although concern over the effect of increasing greenhouse gases is a relatively recent development, scientists have been investigating the greenhouse effect since the early 1800s. French mathematician and physicist Jean Baptiste Joseph Fourier, while exploring how heat is conducted through different materials, was the first to compare the atmosphere to a glass vessel in 1827. Fourier recognized that the air around the planet lets in sunlight, much like a glass roof.

In the 1850s British physicist John Tyndall investigated the transmission of radiant heat through gases and vapors. Tyndall found that nitrogen and oxygen, the two most common gases in the atmosphere, had no heat-absorbing properties. He then went on to measure the absorption of infrared radiation by carbon dioxide and water vapor, publishing his findings in 1863 in a paper titled “On Radiation Through the Earth’s Atmosphere.”

Swedish chemist Svante August Arrhenius, best known for his Nobel Prize-winning work in electrochemistry, also advanced understanding of the greenhouse effect. In 1896 he calculated that doubling the natural concentrations of carbon dioxide in the atmosphere would increase global temperatures by 4 to 6 Celsius degrees (7 to 11 Fahrenheit degrees), a calculation that is not too far from today’s estimates using more sophisticated methods. Arrhenius correctly predicted that when Earth’s temperature warms, water vapor evaporation from the oceans increases. The higher concentration of water vapor in the atmosphere would then contribute to the greenhouse effect and global warming.

The predictions about carbon dioxide and its role in global warming set forth by Arrhenius were virtually ignored for over half a century, until scientists began to detect a disturbing change in atmospheric levels of carbon dioxide. In 1957 researchers at the Scripps Institution of Oceanography, based in San Diego, California, began monitoring carbon dioxide levels in the atmosphere from Hawaii’s remote Mauna Loa Observatory located 3,000 m (11,000 ft) above sea level. When the study began, carbon dioxide concentrations in the Earth’s atmosphere were 315 molecules of gas per million molecules of air (abbreviated parts per million or ppm). Each year carbon dioxide concentrations increased—to 323 ppm by 1970 and 335 ppm by 1980. By 1988 atmospheric carbon dioxide had increased to 350 ppm, an 8 percent increase in only 31 years.
As other researchers confirmed these findings, scientific interest in the accumulation of greenhouse gases and their effect on the environment slowly began to grow. In 1988 the World Meteorological Organization and the United Nations Environment Programme established the Intergovernmental Panel on Climate Change (IPCC). The IPCC was the first international collaboration of scientists to assess the scientific, technical, and socioeconomic information related to the risk of human-induced climate change. The IPCC creates periodic assessment reports on advances in scientific understanding of the causes of climate change, its potential impacts, and strategies to control greenhouse gases. The IPCC played a critical role in establishing the United Nations Framework Convention on Climate Change (UNFCCC). The UNFCCC, which provides an international policy framework for addressing climate change issues, was adopted by the United Nations General Assembly in 1992.

Today scientists around the world monitor atmospheric greenhouse gas concentrations and create forecasts about their effects on global temperatures. Air samples from sites spread across the globe are analyzed in laboratories to determine levels of individual greenhouse gases. Sources of greenhouse gases, such as automobiles, factories, and power plants, are monitored directly to determine their emissions. Scientists gather information about climate systems and use this information to create and test computer models that simulate how climate could change in response to changing conditions on the Earth and in the atmosphere. These models act as high-tech crystal balls to project what may happen in the future as greenhouse gas levels rise. Models can only provide approximations, and some of the predictions based on these models often spark controversy within the science community. Nevertheless, the basic concept of global warming is widely accepted by most climate scientists.

Comments

Popular posts from this blog

Types of Pollution

Air Pollution

Changes to Earth's Surface: Weathering